Memory Management
Manage the Network Guardian's memory systems to adjust anomaly detection sensitivity and rules.
Semantic Memory
Semantic memory stores network topology and baseline metrics for normal operations.
Loading...
Episodic Memory
Episodic memory stores historical events and past incidents to improve correlation and diagnosis.
Loading...
Procedural Memory
Procedural memory stores diagnostic procedures and resolution steps for different types of network issues.
Loading...
Anomaly Detection Rules
Current Detection Logic
# Pseudo-code for anomaly detection def detect_anomalies(metrics, baselines): anomalies = [] for component_id, component_metrics in metrics.items(): # Get baseline values for this component type component_baselines = baselines.get(component_type) # CPU load check if component_metrics.cpu_load > 80: anomalies.append({ "component_id": component_id, "metric": "cpu_load", "value": component_metrics.cpu_load, "baseline": component_baselines.cpu_load, "severity": calculate_severity(component_metrics.cpu_load, 80) }) # Memory usage check if component_metrics.memory_used_percent > 85: anomalies.append({ "component_id": component_id, "metric": "memory_used_percent", "value": component_metrics.memory_used_percent, "baseline": component_baselines.memory_used_percent, "severity": calculate_severity(component_metrics.memory_used_percent, 85) }) # Latency check (if applicable) if hasattr(component_metrics, "latency_ms"): if component_metrics.latency_ms > component_baselines.latency_ms * 2.5: anomalies.append({ "component_id": component_id, "metric": "latency_ms", "value": component_metrics.latency_ms, "baseline": component_baselines.latency_ms, "severity": calculate_severity( component_metrics.latency_ms, component_baselines.latency_ms * 2.5 ) }) # Error rate check (if applicable) if hasattr(component_metrics, "error_rate"): if component_metrics.error_rate > component_baselines.error_rate * 5: anomalies.append({ "component_id": component_id, "metric": "error_rate", "value": component_metrics.error_rate, "baseline": component_baselines.error_rate, "severity": calculate_severity( component_metrics.error_rate, component_baselines.error_rate * 5 ) }) return anomalies